skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Li"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 6, 2026
  2. The non-volatile Resistive RAM (ReRAM) crossbar has shown great potential in accelerating inference in various machine learning models However, it suffers from high reprogramming energy, hindering its usage for on-device adaption to new tasks. Recently, parameter-efficient fine-tuning methods, such as Low-Rank Adaption (LoRA), have been proposed to train few parameters while matching full fine-tuning performance. However, in ReRAM crossbar, the reprogramming cost of LoRA is non-trivial and will increase significantly when adapting to multi-tasks on the device. To address this issue, we are the first to propose LoRAFusion, a parameter-efficient multi-task on-device learning framework for ReRAM crossbar via fusion of pre-trained LoRA modules. LoRAFusion is a group of LoRA modules that are one-time learned based on diverse domain-specific tasks and deployed to the crossbar, acting as the pool of background knowledge. Then given a new unseen task, those LoRA modules are frozen (i.e., no energy-hungry ReRAM cells reprograming), only the proposed learnable layer-wise LoRA fusion coefficient and magnitude vector parameters are trained on-device to weighted-combine pre-trained LoRA modules, which significantly reduces the training parameter size. Our comprehensive experiments show LoRAFusion only uses 3% of the number of trainable parameters in LoRA (148K vs. 4700K), with 0.19% accuracy drop. Codes are available at https://github.com/ASU-ESIC-FAN-Lab/LoRAFusion 
    more » « less
    Free, publicly-accessible full text available June 29, 2026
  3. Free, publicly-accessible full text available August 4, 2026
  4. Free, publicly-accessible full text available September 1, 2026
  5. Free, publicly-accessible full text available August 1, 2026
  6. Free, publicly-accessible full text available June 11, 2026
  7. Inspired by the success of Self-Supervised Learning (SSL) in learning visual representations from unlabeled data, a few recent works have studied SSL in the context of Continual Learning (CL), where multiple tasks are learned sequentially, giving rise to a new paradigm, namely Self-Supervised Continual Learning (SSCL). It has been shown that the SSCL outperforms Supervised Continual Learning (SCL) as the learned representations are more informative and robust to catastrophic forgetting. However, building upon the training process of SSL, prior SSCL studies involve training all the parameters for each task, resulting to prohibitively high training cost. In this work, we first analyze the training time and memory consumption and reveals that the backward gradient calculation is the bottleneck. Moreover, by investigating the task correlations in SSCL, we further discover an interesting phenomenon that, with the SSL-learned background model, the intermediate features are highly correlated between tasks. Based on these new finding, we propose a new SSCL method with layer-wise freezing which progressively freezes partial layers with the highest correlation ratios for each task to improve training computation efficiency and memory efficiency. Extensive experiments across multiple datasets are performed, where our proposed method shows superior performance against the SoTA SSCL methods under various SSL frameworks. For example, compared to LUMP, our method achieves 1.18x, 1.15x, and 1.2x GPU training time reduction, 1.65x, 1.61x, and 1.6x memory reduction, 1.46x, 1.44x, and 1.46x backward FLOPs reduction, and 1.31%/1.98%/1.21% forgetting reduction without accuracy degradation on three datasets, respectively. 
    more » « less
    Free, publicly-accessible full text available April 23, 2026
  8. Free, publicly-accessible full text available April 25, 2026
  9. Free, publicly-accessible full text available April 25, 2026